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Probability characteristics of the duration of stay, temperature, and degree of burning for particles in a 

fluidized bed are investigated. An unknown-boundary problem is used as a model to calculate the process 

of limestone particle dissociation. 

Introduction.The random nature of the duration of particle stay in the working zone due to random motions 

and collisions of the particles is a special feature of the technological processes of fluidized-bed treatment of 

material. The time of material treatment is one of the most important technological parameters that governs the 

degree of completeness for a technological process and the capacity. Since the duration of particle stay is the random 

quantity, particle characteristics, such as temperature and the degree of burning, turn out to be the random 
quantities, too. To develop the theoretical-estimation methods for the degree of completeness of the physicochemical 

processes in question, we need to have the adequate mathematical description of particle characteristics that must 
be performed in probability-theoretic terms. 

Mathematical Model. For a theoretical estimation of the probability characteristics of the duration of 

particle stay in a fluidized bed, use is made of a computational experiment on calculating the variation in the 

concentration of tagged particles at the outlet from the working zone [ 1 ]. The process is modeled on the basis of 

a mathematical model of the diffusion process of the particles and transfer motion of a bed with a specified flow 

velocity. As a result of the computational experiment we are able to obtain complete information on the probability 

characteristics of the duration of particle stay. The magnitudes of the initial and central moments can also be 
calculated by the final algebraic expressions that are derived analytically in terms of the coefficients of the 

mathematical model of the diffusion process [1 ]. The expectation of the duration of particle stay coincides with the 

calculated time of the regime of ideal displacement mr = L/u.  The variance of the duration of particle stay in the 

bed is calculated by the following relation [1 ]: 

] D r = m  r ~  1 + ~ - ~ ( e x p ( -  P e ) -  1) . 

As a mathematical model for calculating the process of the heating of a spherically shaped particle and its 

subsequent burning accompanied by the reaction of limestone dissociation, let us use a problem with the unknown 

boundary [2 ] that separates the reacted portion of particle material from the unreacted portion (Stefan type prob- 
lem): 

OZ i (x ,  t) (OT~/_ (x, t) 2 dZ i (x, t ) l  
Pi ci - )'i / + (2 )  

Ot | Ox 2 x J Ox \ 

for i = 1 ,  x E  [O;s ( t ) ] ;  i = 2 ,  x E  [ s ( t ) ; R ] ;  

s(0)  = s 0 ,  T 1 (x, 0) = T 0 (x ) ,  x E  [0;s  0I ,  T2(x, 0) = (x), x ~  [s0, R ] ;  (3) 
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c)T l (0, t) = 0 ; (4) 
dx 

)t2 OT 2 (R, t) X 
Ox - a  [Th. m -  T ( R , t ) ] ;  (5) 

r ~ ( s ( t )  t )  T *  , = ' , = = const i 1, 2,  (6) 

21 OT 1 (s, t) 22 OT 2 (s, t) ds  
Ox Ox - tc p l  1 (T  - T*) -dr ; 

(7) 

where (2) are the one-dimensional heat conduction equations for limestone (i = 1) and lime (i = 2); (3) are the 

initial conditions for the position of the boundary between the lime and limestone and for the temperature 

distributions; (4) and (5) are the boundary conditions at the center of the particle and on its surface; (6) is the 

continuity condition for the temperature field; (7) is the equation for the unknown boundary (the Stefan condition). 

To calculate mathematical model (2)-(7), we employed a finite-difference approximation of the boundary 

problem with explicit separation of the position coordinate for the unknown boundary [3 ]. In the calculations, we 

used the following thermophysical characteristics: the latent heat of the reaction of limestone dissociation x = 1640 

kJ; the limestone density Pl -- 2600 kg/m3; the lime density P2 -- 1690 kg/m3; the temperature of the dissociation 

reaction 7'* -- 850~ the particle radius R = 0.024 m; the total heat-transfer coefficient ct x = 250 W/(m2.~ 

Statement of the Problem of Analysis and Its Solution Method. The problem of analysis of the probability 

characteristics for a temperature process of particle burning consists in determination of the distribution law, 

expectations, variances, central and initial moments of a higher order from the specified probability characteristics 
of the duration of stay. 

Exhaustive information on a random quantity is carried by the differential distribution of the investigated 

parameter. Calculation of the distribution laws is a complicated problem while information on several initial and 

central moments of the random quantity will suffice for both the analysis and practical conclusions. The complexity 

of the general approaches of a probability-theoretic investigation of nonlinear dynamic processes makes necessary 

approximate methods for the analysis of statistical dynamics [4 ]. One of the most economical and accurate methods 

is the interpolation method, which is similar to the Monte Carlo method in versatility. As far as computation is 

concerned, the interpolation method is the successive employment of Gauss quadrature formulas, where the prob- 

abiL;ty density distribution for the random quanti ty  is used as the weighting functions [4 ]. 

In accordance with the interpolation method, the expectation and variance of the quantity in question (for 

example, the degree of burning) are calculated by the following formulas: 

tl 

M [r ( z )  l =  ~ r i Y ( m  r + o  rvi) ,  
i = 1  

n ]2 
D [ r ( r )  l =  ~ r i l r ( m , + G ,  v i ) - m  r . 

i = l  

The Chebyshev nodes and Christoffel numbers that are required for the calculations are calculated for 

random quantities with a uniform, normal, or exponential law of probability distribution [4 ]. The calculations of 

probability characteristics by the interpolation method with different powers of the approximating polynomials 

showed that, when n = 5 and n = 7, the results of the calculations of the first- and second-order moments differ 

in the third decimal place. As the order of the computed moments increases, to ensure the required accuracy, we 

must increase the power of the approximation polynomials. To compute the moments of the third and the fourth 

order (asymmetry and excess), integration of the investigated system of equations at no fewer than 9 points is 
required. 
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TABLE 1. Probability Characteristics of the Duration of Particle Stay as Functions of the Diffusion Coefficient 

Average duration of 

stay mr, min 

30 

40 

50 

60 

4.5 
0.15 

6.8 
0.17 

Diffusion coefficient D. 103 m/sec 

7.6 
0.25 

11.6 
0.29 

9.8 
0.33 

14.9 
0.37 

10 

13.4 
0.46 

20.1 
0.50 

9.6 
0.19 

12.6 
0.21 

16.3 
0.33 

21.3 
0.35 

20.6 
0.41 

N 
24.3 
0.45 

27.6 
0.55 

35.5 
0.59 

Note: In Table 1, the Peclet number is indicated in the rectangle, the standard deviation of the random 

quantity is over the bar, and the coefficient of variation is indicated under the bar. 

The interpolation method is used to determine the probability characteristics of the temperature and degree 

of material burning in a fluidized bed. 

Numerical Analysis. We investigated the probability characteristics of the duration of stay in the range of 

the diffusion coefficients that were obtained experimentally for different fluidized-bed treated materials [5 ]. Table 

1 gives the results of a numerical investigation of the probability characteristics of the duration of particle stay in 

the reactor for different values of the parameters of the process. The standard deviation of the duration of stay and 

the coefficient of variation (V = trr/mO increase as the Peclet number decreases. Only the coefficient of variation 

is determined uniquely by the Peclet number. The variance of the duration of particle stay depends on the 

expectation of the duration of stay and the diffusion coefficient. The investigation of the limit of expression (2) as 

Pe ~ 0 for rnr = const, which corresponds to an unbounded increase in the diffusion coefficient, shows that 

or -" mr, i.e., the standard deviation is bounded by the expectation of the duration of stay. In this case, the process 

of particle motion is similar to the regime of ideal mixing, while the law of particle distribution by the duration of 

stay tends to an exponential law. As Pe --, oo the variance, asymmetry, and excess tend to zero, while the process 

of particle motion tends to the regime of ideal displacement. 

Analysis of the results in Table 1 indicates that the standard deviation increases as the flow velocity of bed 

motion decreases, more rapidly than the expectation of the duration of stay. This fact is reflected in an increase 

in the coefficient of variation. 

In the Peclet number range in question, the density of the distribution of the duration of stay is similar to 

a normal law in character; however, it is distinguished by asymmetry and excess. With the aim of simplifying the 

calculations we take the assumption of the normal distribution law. 

The process of limestone dissociation that is modeled by the unknown-boundary problem is significantly 

nonlinear, in connection with which the expectation of the degree of burning in the general case will not be equal 

to the degree of burning that is calculated by mathematical model (2)-(7) for a burning time equal to the 

expectation. It is of practical interest to establish the limits of the standard deviation of the duration of stay within 

which the equality M [7(r) ] -- 7(too can be considered approximately satisfied. 

Table 2 gives the probability characteristics of the particles treated in the burning zone. As the standard 

deviation of the duration of stay increases, with its expectation being constant, not only the variance but also the 

expectations of all the characteristics of a particle change, which confirms the nonlinearity of the corresponding 
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TABLE 2. Probability Characteristics of the Temperatures and Degree of Limestone Particle Burring for Different 
Standard Deviations of the Duration of Stay in the Burning Zone 

Standard deviation 
of the duration of 

stay aT, rain 

10 

15 

Mean-mass particle 
temperature, ~ 

902 

902 
0.7 

902 
3.6 

902 
7.5 

901 
11.6 

Particle surface 
temperature, ~ 

1054 

1054 
0.6 

1054 
2.8 

1053 
6.6 

1051 
15.1 

Radius of the 
unreacted nucleus s -  104, m 

132 

132 
1.6 

133 
7.9 

134 
16.1 

135 
25.0 

Degrees of particle 
burning 7, % 

83.2 

83.2 
0.6 

82.9 
3.1 

82.0 
6.8 

80.2 
12.3 

Note: In Tables 2 and 3, the expectation is indicated over the bar while the root-mean-square deviation of 
the random quantity is indicated under the bar. 

TABLE 3. Probability Characteristics of the Degree of Limestone Particle Burning for Different Durations of Stay 
and Burning Temperatures 

Duration of stay ray~aT, min Burning temperature, ~ Degree of burning my/@, % 

30 
7.6 

40 
11.7 

50 
16.3 

60 
21.3 

1180 

1250 

1100 

1155 

1100 

1250 

1100 

1200 

81.5 
7.0 

86.0 
6.5 

81.5 
8.4 

86.0 
7.8 

86.0 
9.2 

94.0 
7.2 

89.0 
10.0 

94.1 
8.5 

functional dependences. The degree of nonlinearity for different particle characteristics differs significantly. The 

maximum nonlinearity is offered by the degree of particle burning. When ar < 5 min the probability calculation 
can be replaced, with the permissible error, by a deterministic calculation of the temperatures and degree of 

burning. When ar > 10 min ignoring the random time of particle stay leads now to substantial errors in the numerical 

estimation of the degree of burning for a particle. 
It is of interest to elucidate the controlling potential of the temperature of the heating medium in the burning 

zone. The development of a temperature regime of burning consists in determining the zone temperature that will 

ensure the specified degree of particle burning 7", i.e., 

= y *  . m v (8) 
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In terms of mathematics, the solution of the problem reduces to a one-dimensional search for a Thin that 

will ensure the satisfaction of equality (8). To determine the required temperature, we can use the dichotomy, 
Newton, and other methods. 

The character of the process and the structure of the object under consideration are such that they give no 

way of stating the problem of minimization of the variance of the degree of particle burning. In this connection, 

each level of degree of burning will have its own variance. 

Analysis of the possibilities of controlling the degree of burning and its variance by the results of the 

calculations of Table 3 permits the conclusions that only the expectation can be controlled by varying the burning 

temperature. In this case, we are unable to attain a substantial decrease in the variance. Its decrease can be expected 

when burning approaches 100%. However, the dynamics of the process of limestone dissociation is such that the 

reaction rate drops sharply as the boundary approaches the center of the particle (calculation of the velocity of 

boundary motion on the surface of the particle and near the center shows a fourfold decrease). A twofold increase 

in the average duration of stay (from 30 to 60 min for Thin = 1100~ increases the degree of burning from 74.8 

to 89.0%, while the decrease in the standard deviation is only by 1.5%. In this connection, striving for the complete 

burning of large fractions will require a sharp reduction in the capacity of the unit or a considerable power 
expenditure. 

A decrease in the variance of the degree of particle burning can be attained by using more intense regimes 

of treatment. Thus, as the average duration of stay decreases from 50 to 30 min the variance decreases by 

approximately 30% for the same degree of burning. In this case, we must raise the burning temperature by 

130-150~ which can violate the limitations on the condition of fusion for the panicle surface and will lead again 

to considerable power expenditure. 

C o n c l u s i o n s .  The numerical investigations of probability characteristics for the duration of stay, 

temperature, and degree of particle burning enabled us to establish a number of properties of the temperature 

process of fluidized-bed treatment of a material that are of fundamental importance when the capacity and the 

quality of the obtained material are determined. 

We established a nonlinearity effect for the process of fluidized-bed treatment of particles that is due to 

its s t o c h a s t i c  nature and c o n s i s t s  in a significant decrease in the expectation of the degree of burning as the variance 

of the duration of particle stay increases. 

Analysis of the controllability of the degree of material burning showed that only the expectation can 

efficiently be controlled by varying the burning temperature. In this case, we are unable to substantially decrease 

the variance. 

N O T A T I O N  

d, coefficient of particle diffusion in bed; L, working length of reactor; u, flow-rate velocity of material 

motion; ~, duration of particle stay in bed; Pe, Peclet number; T ( x ,  t ) ,  material temperature at point x at instant 

l; ]t i, Pi,  and ci, thermal conductivity, density, and heat capacity of material, respectively, i = 1, limestone, i = 2, 

lime; a E, total heat-transfer coefficient; T*, temperature of the reaction of limestone dissociation; x, specific latent 

heat of the reaction of limestone dissociation; Th.m, heating-medium temperature; I ( T -  T*), unit Heaviside 

function; y, degree of particle burning; M, rn, symbols for expectation of random quantity; D, symbol for variance 

of random quantity; a, standard deviation of random quantity; v i standard Chebyshev-type nodes; r i, Christoffel 

numbers that correspond to the chosen nodes vi; n,  number of different values of random quantity (power of 

interpolation polynomial). 
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